On sets of uniqueness for harmonic functions in the unit circle
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 78-123

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of this paper show that the structure of sets mentioned in the title is not trivial. For example, it is shown that there exist countable sets of uniqueness for logarithmic potential, i.e., closed countable subsets $E$ of the unit circle $\mathbb T$ such that $$ f\in C(\mathbb T),\ f\mid_E=0,\ U^f\mid_E=0\ \Rightarrow f\equiv0. $$ Here $U^f(z)=\frac1\pi\int_0^{2\pi}f(e^{i\theta})\log\frac1{|z-e^{i\theta}|}\,d\theta$. On the other hand, it is shoum that every countable porous closed subset of $\mathbb T$ is a nonuniqueness set. Bibliography: 9 titles.
@article{ZNSL_1995_222_a3,
     author = {Yu. Ya. Vymenets},
     title = {On sets of uniqueness for harmonic functions in the unit circle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--123},
     publisher = {mathdoc},
     volume = {222},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a3/}
}
TY  - JOUR
AU  - Yu. Ya. Vymenets
TI  - On sets of uniqueness for harmonic functions in the unit circle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 78
EP  - 123
VL  - 222
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a3/
LA  - ru
ID  - ZNSL_1995_222_a3
ER  - 
%0 Journal Article
%A Yu. Ya. Vymenets
%T On sets of uniqueness for harmonic functions in the unit circle
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 78-123
%V 222
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a3/
%G ru
%F ZNSL_1995_222_a3
Yu. Ya. Vymenets. On sets of uniqueness for harmonic functions in the unit circle. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 78-123. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a3/