On sets of uniqueness for harmonic functions in the unit circle
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 78-123
Voir la notice de l'article provenant de la source Math-Net.Ru
The results of this paper show that the structure of sets mentioned in the title is not trivial. For example, it is shown that there exist countable sets of uniqueness for logarithmic potential, i.e., closed countable subsets $E$ of the unit circle $\mathbb T$ such that
$$
f\in C(\mathbb T),\ f\mid_E=0,\ U^f\mid_E=0\ \Rightarrow f\equiv0.
$$
Here $U^f(z)=\frac1\pi\int_0^{2\pi}f(e^{i\theta})\log\frac1{|z-e^{i\theta}|}\,d\theta$. On the other hand, it is shoum that every countable porous closed subset of $\mathbb T$ is a nonuniqueness set. Bibliography: 9 titles.
@article{ZNSL_1995_222_a3,
author = {Yu. Ya. Vymenets},
title = {On sets of uniqueness for harmonic functions in the unit circle},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--123},
publisher = {mathdoc},
volume = {222},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a3/}
}
Yu. Ya. Vymenets. On sets of uniqueness for harmonic functions in the unit circle. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 23, Tome 222 (1995), pp. 78-123. http://geodesic.mathdoc.fr/item/ZNSL_1995_222_a3/