Ansatz with Hermite polynomials for a multidimensional well
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 24, Tome 218 (1994), pp. 149-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Schrödinger operator in $\mathbb R^d$ with an analytic potential, having a nondegenerated minimum (well) at the origin, is considered. The ansatz with Hermite polynomials is used. Under a Diophantine condition on the frequencies, full asymptotic series (the Plank constant $h$ tending to zero) for eigenfunctions with given quantum numbers $n\in\mathbb N^d$ concentrated at the bottom of the well, is constructed, the Gaussian-like asymptotics being valid in a neighbourhood of the origin which is independent of $h$. The obtained asymptotic series can be prolonged on a larger domain with the help of ray methods. The way to find zero-sets of the eigenfunctions is described. Some exarnples are considered. Bibliography: 22 titles.
@article{ZNSL_1994_218_a11,
     author = {T. F. Pankratova},
     title = {Ansatz with {Hermite} polynomials for a~multidimensional well},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--165},
     year = {1994},
     volume = {218},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_218_a11/}
}
TY  - JOUR
AU  - T. F. Pankratova
TI  - Ansatz with Hermite polynomials for a multidimensional well
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 149
EP  - 165
VL  - 218
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_218_a11/
LA  - ru
ID  - ZNSL_1994_218_a11
ER  - 
%0 Journal Article
%A T. F. Pankratova
%T Ansatz with Hermite polynomials for a multidimensional well
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 149-165
%V 218
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_218_a11/
%G ru
%F ZNSL_1994_218_a11
T. F. Pankratova. Ansatz with Hermite polynomials for a multidimensional well. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 24, Tome 218 (1994), pp. 149-165. http://geodesic.mathdoc.fr/item/ZNSL_1994_218_a11/