On a~maximum principle for pseudocontinuable functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 16-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\theta$ be an inner function; $\alpha\in\mathbb C$, $|\alpha|=1$. Denote by $\sigma_\alpha$ the nonnegative singular measure whose Poisson integral is equal to $\operatorname{Re}\frac{\alpha+\theta}{\alpha-\theta}$. The Clark theorem allows us naturally to identity $H^2\ominus\theta H^2$ with $L^2(\sigma_\alpha)$. Let $U_\alpha$ be the unitary operator producing this identification. The main aim of this paper is to prove the following theorem. Theorem. Let $f\in H^2\ominus\theta H^2$; $2$; $\alpha,\beta\in\mathbb C$; $|\alpha|=|\beta|=1$, $\alpha\ne\beta$. Suppose that $U_\alpha f\in L^p(\sigma_\alpha)$ and $U_\beta f\in L^p(\sigma_\beta)$. Then $f\in H^p$. Bibliography: 11 titles.
@article{ZNSL_1994_217_a1,
     author = {A. B. Aleksandrov},
     title = {On a~maximum principle for pseudocontinuable functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {16--25},
     publisher = {mathdoc},
     volume = {217},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a1/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - On a~maximum principle for pseudocontinuable functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 16
EP  - 25
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a1/
LA  - ru
ID  - ZNSL_1994_217_a1
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T On a~maximum principle for pseudocontinuable functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 16-25
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a1/
%G ru
%F ZNSL_1994_217_a1
A. B. Aleksandrov. On a~maximum principle for pseudocontinuable functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 16-25. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a1/