On a maximum principle for pseudocontinuable functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 16-25
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\theta$ be an inner function; $\alpha\in\mathbb C$, $|\alpha|=1$. Denote by $\sigma_\alpha$ the nonnegative singular measure whose Poisson integral is equal to $\operatorname{Re}\frac{\alpha+\theta}{\alpha-\theta}$. The Clark theorem allows us naturally to identity $H^2\ominus\theta H^2$ with $L^2(\sigma_\alpha)$. Let $U_\alpha$ be the unitary operator producing this identification. The main aim of this paper is to prove the following theorem. Theorem. Let $f\in H^2\ominus\theta H^2$; $2
; $\alpha,\beta\in\mathbb C$; $|\alpha|=|\beta|=1$, $\alpha\ne\beta$. Suppose that $U_\alpha f\in L^p(\sigma_\alpha)$ and $U_\beta f\in L^p(\sigma_\beta)$. Then $f\in H^p$. Bibliography: 11 titles.
@article{ZNSL_1994_217_a1,
author = {A. B. Aleksandrov},
title = {On a~maximum principle for pseudocontinuable functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {16--25},
year = {1994},
volume = {217},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a1/}
}
A. B. Aleksandrov. On a maximum principle for pseudocontinuable functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 16-25. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a1/