The inverse spectral problem for finite rank Hankel operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 5-15

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Let $\Lambda$ be a divisor of $n$ points of the unit disk, and let $\sigma_1,\sigma_2,\dots,\sigma_n$ be a finite sequence of non-zero complex numbers. Then there exists a Hankel operator $\Gamma$ of rank $n$ such that the divisor of the poles of its symbol is $\Lambda$ and the eigenvalues of $\Gamma$ (counted with the multiplicities) are $\sigma_1,\sigma_2,\dots,\sigma_n$. Bibliography: 11 titles.
@article{ZNSL_1994_217_a0,
     author = {E. V. Abakumov},
     title = {The inverse spectral problem for finite rank {Hankel} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {217},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a0/}
}
TY  - JOUR
AU  - E. V. Abakumov
TI  - The inverse spectral problem for finite rank Hankel operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 5
EP  - 15
VL  - 217
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a0/
LA  - ru
ID  - ZNSL_1994_217_a0
ER  - 
%0 Journal Article
%A E. V. Abakumov
%T The inverse spectral problem for finite rank Hankel operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 5-15
%V 217
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a0/
%G ru
%F ZNSL_1994_217_a0
E. V. Abakumov. The inverse spectral problem for finite rank Hankel operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 5-15. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a0/