The inverse spectral problem for finite rank Hankel operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 5-15
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved. Let $\Lambda$ be a divisor of $n$ points of the unit disk, and let $\sigma_1,\sigma_2,\dots,\sigma_n$ be a finite sequence of non-zero complex numbers. Then there exists a Hankel operator $\Gamma$ of rank $n$ such that the divisor of the poles of its symbol is $\Lambda$ and the eigenvalues of $\Gamma$ (counted with the multiplicities) are $\sigma_1,\sigma_2,\dots,\sigma_n$. Bibliography: 11 titles.
@article{ZNSL_1994_217_a0,
author = {E. V. Abakumov},
title = {The inverse spectral problem for finite rank {Hankel} operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--15},
publisher = {mathdoc},
volume = {217},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a0/}
}
E. V. Abakumov. The inverse spectral problem for finite rank Hankel operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 22, Tome 217 (1994), pp. 5-15. http://geodesic.mathdoc.fr/item/ZNSL_1994_217_a0/