Infinitelydivisible states, $1$-cocycles and conditionally positive functionals on algebras
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 146-162

Voir la notice de l'article provenant de la source Math-Net.Ru

The duality pairs of algebras are considered. It means that spaces of states are semigroups (duality in Vershik sense). We introduce a class algebras, named equipped, and investigate the cone $CL(\mathfrak A)$ of conditionally positive functionals on algebra $\mathfrak A$, connections between $CL(\mathfrak A)$, geometry of dual object $\mathfrak A$ and $1$-cocycles on $\mathfrak A$ to $*$-representations. In group algebras case we have a symmetric construction to describe infinitelydivisible measures and states. Bibliography: 10 titles.
@article{ZNSL_1994_215_a9,
     author = {S. I. Karpushev},
     title = {Infinitelydivisible states, $1$-cocycles and conditionally positive functionals on algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--162},
     publisher = {mathdoc},
     volume = {215},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a9/}
}
TY  - JOUR
AU  - S. I. Karpushev
TI  - Infinitelydivisible states, $1$-cocycles and conditionally positive functionals on algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1994
SP  - 146
EP  - 162
VL  - 215
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a9/
LA  - ru
ID  - ZNSL_1994_215_a9
ER  - 
%0 Journal Article
%A S. I. Karpushev
%T Infinitelydivisible states, $1$-cocycles and conditionally positive functionals on algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 1994
%P 146-162
%V 215
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a9/
%G ru
%F ZNSL_1994_215_a9
S. I. Karpushev. Infinitelydivisible states, $1$-cocycles and conditionally positive functionals on algebras. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 14, Tome 215 (1994), pp. 146-162. http://geodesic.mathdoc.fr/item/ZNSL_1994_215_a9/