On the local coordinates on the manifold of finite-gap solutions of the KdV equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 47-56
Cet article a éte moissonné depuis la source Math-Net.Ru
A theorem is proved about nondegeneracy of the map $$ (E_1<E_2<\dots<E_{2g+1})\to(V,W,c), $$ where $E_i$ are the branching points of the hyperelliptic curve $\Gamma$, which corresponds to the finite-gap solution of KdV equation $u_g(x,t)$. Here $V,W$ are frequency vectors and $c$ is the “mean value” of the potential $u_g(x,t)$. The bijectivity of this map for $g=1$ is proved. Complex generalization of the nondegeneracy result is proved. Bibliography: 11 titles.
@article{ZNSL_1994_210_a4,
author = {R. F. Bikbaev},
title = {On the local coordinates on the manifold of finite-gap solutions of the {KdV} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {47--56},
year = {1994},
volume = {210},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a4/}
}
R. F. Bikbaev. On the local coordinates on the manifold of finite-gap solutions of the KdV equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 23, Tome 210 (1994), pp. 47-56. http://geodesic.mathdoc.fr/item/ZNSL_1994_210_a4/