An analogue of the Maslov index
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 7, Tome 208 (1993), pp. 133-135

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the Maslov index is constructed for an $n$-dimensional oriented totally real submanifold of a quasicomplex $2n$-manifold with the first Chern class vanishing modulo $k$. Relationships with the familiar invariants are considered in special cases. Bibliography: 10 titles.
@article{ZNSL_1993_208_a6,
     author = {N. Yu. Netsvetaev},
     title = {An analogue of the {Maslov} index},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--135},
     publisher = {mathdoc},
     volume = {208},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a6/}
}
TY  - JOUR
AU  - N. Yu. Netsvetaev
TI  - An analogue of the Maslov index
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1993
SP  - 133
EP  - 135
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a6/
LA  - ru
ID  - ZNSL_1993_208_a6
ER  - 
%0 Journal Article
%A N. Yu. Netsvetaev
%T An analogue of the Maslov index
%J Zapiski Nauchnykh Seminarov POMI
%D 1993
%P 133-135
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a6/
%G ru
%F ZNSL_1993_208_a6
N. Yu. Netsvetaev. An analogue of the Maslov index. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 7, Tome 208 (1993), pp. 133-135. http://geodesic.mathdoc.fr/item/ZNSL_1993_208_a6/