Projections onto $L^p$-spaces of polyanalytic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 15-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Main result: for an arbitrary bounded simply connected domain $\Omega$ in $\mathbb{C}$ the subspaces $L_{n,m}^p(\Omega)$ of $L^p(\Omega)$ ($1\leqslant p\infty$) consisting of $(m,n)$-analytic functions in $\Omega$ is complemented in $L^p(\Omega)$ (A functions $f$ on $\Omega$ is $(m,n)$-analytic if $(\partial^{m+n}/\partial\bar{z}^m\partial z^n)f=0$ in $\Omega$). It implies (due to a result of J. Lindenstrauss and A. Pelozynski) that the space $L_{n,m}^p(\Omega)$ is linearly homeomorphic to $l^p$. In the case $m=n=1$ we get the complementedness in $L^p(\Omega)$ of the space of all harmonic $L^p$-functions in $\Omega$ — a result previously known only for smooth domains.
@article{ZNSL_1991_190_a1,
     author = {A. V. Vasin},
     title = {Projections onto $L^p$-spaces of polyanalytic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--33},
     publisher = {mathdoc},
     volume = {190},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a1/}
}
TY  - JOUR
AU  - A. V. Vasin
TI  - Projections onto $L^p$-spaces of polyanalytic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 15
EP  - 33
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a1/
LA  - ru
ID  - ZNSL_1991_190_a1
ER  - 
%0 Journal Article
%A A. V. Vasin
%T Projections onto $L^p$-spaces of polyanalytic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 15-33
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a1/
%G ru
%F ZNSL_1991_190_a1
A. V. Vasin. Projections onto $L^p$-spaces of polyanalytic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 15-33. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a1/