Projections onto $L^p$-spaces of polyanalytic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 15-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Main result: for an arbitrary bounded simply connected domain $\Omega$
in $\mathbb{C}$ the subspaces $L_{n,m}^p(\Omega)$ of $L^p(\Omega)$ ($1\leqslant p\infty$)
consisting of $(m,n)$-analytic functions in $\Omega$ is complemented in
$L^p(\Omega)$ (A functions $f$ on $\Omega$ is $(m,n)$-analytic if
$(\partial^{m+n}/\partial\bar{z}^m\partial z^n)f=0$ in $\Omega$).
It implies (due to a result of J. Lindenstrauss and A. Pelozynski) that the space $L_{n,m}^p(\Omega)$ is
linearly homeomorphic to $l^p$.
In the case $m=n=1$ we get the complementedness in $L^p(\Omega)$
of the space of all harmonic $L^p$-functions in $\Omega$ — a result previously
known only for smooth domains.
@article{ZNSL_1991_190_a1,
author = {A. V. Vasin},
title = {Projections onto $L^p$-spaces of polyanalytic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--33},
publisher = {mathdoc},
volume = {190},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a1/}
}
A. V. Vasin. Projections onto $L^p$-spaces of polyanalytic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 15-33. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a1/