On the minimal global attractor for the phase field equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 70-86
Voir la notice de l'article provenant de la source Math-Net.Ru
Unique global solvability of the boundary value problem (1)–(3) and existence of a minimal global attractor for the phase field equations (1), (2) are proved.
@article{ZNSL_1991_188_a2,
author = {V. K. Kalantarov},
title = {On the minimal global attractor for the phase field equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {70--86},
publisher = {mathdoc},
volume = {188},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a2/}
}
V. K. Kalantarov. On the minimal global attractor for the phase field equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 70-86. http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a2/