On the minimal global attractor for the phase field equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 70-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Unique global solvability of the boundary value problem (1)–(3) and existence of a minimal global attractor for the phase field equations (1), (2) are proved.
@article{ZNSL_1991_188_a2,
     author = {V. K. Kalantarov},
     title = {On the minimal global attractor for the phase field equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {70--86},
     publisher = {mathdoc},
     volume = {188},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a2/}
}
TY  - JOUR
AU  - V. K. Kalantarov
TI  - On the minimal global attractor for the phase field equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 70
EP  - 86
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a2/
LA  - ru
ID  - ZNSL_1991_188_a2
ER  - 
%0 Journal Article
%A V. K. Kalantarov
%T On the minimal global attractor for the phase field equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 70-86
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a2/
%G ru
%F ZNSL_1991_188_a2
V. K. Kalantarov. On the minimal global attractor for the phase field equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 70-86. http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a2/