The limit transition $\mathbb{P}_2\to\mathbb{P}_1$
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 75-87
Voir la notice de l'article provenant de la source Math-Net.Ru
The way which allow to consider the well known limit transition $\mathbb{P}_2\to\mathbb{P}_1$ as a double asymptotic of solutions of equation $\mathbb{P}_2$ in a special “transition” domain which is characterized by the relation $\alpha^2/x^3$, where $\alpha$ is the coefficient of $\mathbb{P}_2$, and $x$ is its argument is found. The importance of Bäcklund transformation for this limit transition is clarified. This limit is studied for all possible solutions of $\mathbb{P}_2$.
@article{ZNSL_1991_187_a4,
author = {A. A. Kapaev and A. V. Kitaev},
title = {The limit transition $\mathbb{P}_2\to\mathbb{P}_1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--87},
publisher = {mathdoc},
volume = {187},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a4/}
}
A. A. Kapaev; A. V. Kitaev. The limit transition $\mathbb{P}_2\to\mathbb{P}_1$. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 75-87. http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a4/