The limit transition $\mathbb{P}_2\to\mathbb{P}_1$
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 75-87

Voir la notice de l'article provenant de la source Math-Net.Ru

The way which allow to consider the well known limit transition $\mathbb{P}_2\to\mathbb{P}_1$ as a double asymptotic of solutions of equation $\mathbb{P}_2$ in a special “transition” domain which is characterized by the relation $\alpha^2/x^3$, where $\alpha$ is the coefficient of $\mathbb{P}_2$, and $x$ is its argument is found. The importance of Bäcklund transformation for this limit transition is clarified. This limit is studied for all possible solutions of $\mathbb{P}_2$.
@article{ZNSL_1991_187_a4,
     author = {A. A. Kapaev and A. V. Kitaev},
     title = {The limit transition $\mathbb{P}_2\to\mathbb{P}_1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {187},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a4/}
}
TY  - JOUR
AU  - A. A. Kapaev
AU  - A. V. Kitaev
TI  - The limit transition $\mathbb{P}_2\to\mathbb{P}_1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 75
EP  - 87
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a4/
LA  - ru
ID  - ZNSL_1991_187_a4
ER  - 
%0 Journal Article
%A A. A. Kapaev
%A A. V. Kitaev
%T The limit transition $\mathbb{P}_2\to\mathbb{P}_1$
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 75-87
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a4/
%G ru
%F ZNSL_1991_187_a4
A. A. Kapaev; A. V. Kitaev. The limit transition $\mathbb{P}_2\to\mathbb{P}_1$. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 75-87. http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a4/