On uniformly convergent double Fourier series
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 151-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The uniform convergence in question is defined by means of a system of mutually homotetic starlike polygons. It is established, among other things, that an arbitrary positive sequence in $l^2(\mathbb{T}^2)$ can be majorized by the sequence of absolute values of coefficients of a uniformly convergent double Fourier series.
@article{ZNSL_1989_178_a6,
     author = {S. V. Kislyakov},
     title = {On uniformly convergent double {Fourier} series},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--162},
     year = {1989},
     volume = {178},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a6/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - On uniformly convergent double Fourier series
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 151
EP  - 162
VL  - 178
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a6/
LA  - ru
ID  - ZNSL_1989_178_a6
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T On uniformly convergent double Fourier series
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 151-162
%V 178
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a6/
%G ru
%F ZNSL_1989_178_a6
S. V. Kislyakov. On uniformly convergent double Fourier series. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 151-162. http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a6/