Complexity of factoring and GCD calculating for linear ordinary differential operators
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 4, Tome 176 (1989), pp. 68-103
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L=\sum\limits_{0\leqslant k\leqslant n}f_k(X)\frac{d^k}{dX^k}\in F(X)\left[\frac d{dX}\right]$ be a linear ordinary
differential operator, where the field $F\simeq\mathbb{Q}(T_1,\dots,T_\varepsilon)[Z]/(\varphi)$, here
$T_1,\dots,T_\varepsilon$ are algebraically independent over $\mathbb{Q}$ and the polynomial
$\varphi\in\mathbb{Q}[T_1,\dots,T_\varepsilon][Z]$ is irreducible. Assume that
$\mathrm{deg}_X(f_k)$, $\mathrm{deg}_Z(\varphi)$;
$\mathrm{deg}_{T_1,\dots,T_\varepsilon}(\varphi)$, $\mathrm{deg}_{T_1,\dots,T_\varepsilon}(f_k)$
and the bit-size of each rational coefficient occurring in $L$ and in $\varphi$ is less than $M$.
Define an integer $N$ such that for any representation $L=Q_1Q_2Q_3$, where $Q_1$, $Q_2$,
$Q_3\in\overline{F}(X)\left[\frac d{dx}\right]$ and $Q_2$, $Q_3$ are monic, holds $\mathrm{deg}_X(Q_2)\leqslant N$.
THEOREM. 1) One can factor $L=L_1\dots L_s$ in a product of irreducible
in the ring $\overline{F}(X)\left[\frac d{dx}\right]$ operators $L_1,\dots,L_s\in F_1(X)\left[\frac d{dx}\right]$
and construct an irreducible polynomial $\varphi_1\in\mathbb{Q}(T_1,\dots,T_\varepsilon)[Z]$ such
that $F\simeq\mathbb{Q}(T_1,\dots,T_\varepsilon)[Z]/(\varphi_1)$ in time
$(M((Ndn)^{n^2\log(n)}d_1^{\,\log(n)}d_2)^{n^2+\varepsilon})^{O(1)}$;
2) $N\leqslant\exp((M+\varepsilon d_2)(d2^n)^{o(d2^{2n})}d_1^{\,o(2^n)})$.
Define the greatest common right divisor $G=GCRD(Q_1,\dots,Q_s)$
of a family $Q_1,\dots,Q_s\in F(X)\left[\frac d{dx}\right]$ in such a way that $Q_1=\widetilde{Q}_1G,\dots,Q_s=\widetilde{Q}_sG$
and $G$ is of the maximal possible order. Assume that $Q_1,\dots,Q_s$
satisfy the same bounds as Li above.
THEOREM 3). One can yield $GCRD(Q_1,\dots,Q_s)$ in time $(Md(d_1nsd_2)^{\varepsilon+1})^{O(1)}$.
@article{ZNSL_1989_176_a2,
author = {D. Yu. Grigor'ev},
title = {Complexity of factoring and {GCD} calculating for linear ordinary differential operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {68--103},
publisher = {mathdoc},
volume = {176},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a2/}
}
TY - JOUR AU - D. Yu. Grigor'ev TI - Complexity of factoring and GCD calculating for linear ordinary differential operators JO - Zapiski Nauchnykh Seminarov POMI PY - 1989 SP - 68 EP - 103 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a2/ LA - ru ID - ZNSL_1989_176_a2 ER -
D. Yu. Grigor'ev. Complexity of factoring and GCD calculating for linear ordinary differential operators. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 4, Tome 176 (1989), pp. 68-103. http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a2/