Diophantine complexity
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 3, Tome 174 (1988), pp. 122-131

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that every recursively enumerable set $S$ of natural numbers can be represented as $a\in S\Leftrightarrow \exists x\,\forall y\leqslant x\,\exists z_1,\dots,z_n$ ($D(a,x,y,z_1,\dots,z_n)=0$) (Davis normal form), as $a\in S\Leftrightarrow \exists z_1,\dots,z_n$ ($E_1(a,z_1,\dots,z_n)=E_2(a,z_1,\dots,z_n)$) (exponential Diophantine representation) and as $a\in S\Leftrightarrow \exists z_1,\dots,z_n$ ($D(a,z_1,\dots,z_n)=0$) (Diophantine representation). Each of the above three representations enables us to introduce different complexity measures both of the set $S$ as a whole and of accepting individual members of $S$. The paper surveys some results by different authors connected with such kinds of complexity measures.
@article{ZNSL_1988_174_a4,
     author = {Yu. V. Matijasevich},
     title = {Diophantine complexity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--131},
     publisher = {mathdoc},
     volume = {174},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_174_a4/}
}
TY  - JOUR
AU  - Yu. V. Matijasevich
TI  - Diophantine complexity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 122
EP  - 131
VL  - 174
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_174_a4/
LA  - ru
ID  - ZNSL_1988_174_a4
ER  - 
%0 Journal Article
%A Yu. V. Matijasevich
%T Diophantine complexity
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 122-131
%V 174
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_174_a4/
%G ru
%F ZNSL_1988_174_a4
Yu. V. Matijasevich. Diophantine complexity. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 3, Tome 174 (1988), pp. 122-131. http://geodesic.mathdoc.fr/item/ZNSL_1988_174_a4/