Complexity of deciding the first-order theory of real closed fields
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 3, Tome 174 (1988), pp. 53-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a formula with $a$ quantifier alternations be given having atomic subformulas of the kind ($f_j\geqslant0$) with polynomials $f_i$ as in [5]. Deciding algorithm is designed with complexity $(M(kd)^{(O(n))^{5a-2(m+1)}}\cdot d_0^{(m+n)})^{O(1)}$.
@article{ZNSL_1988_174_a2,
     author = {D. Yu. Grigor'ev},
     title = {Complexity of deciding the first-order theory of real closed fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--100},
     publisher = {mathdoc},
     volume = {174},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_174_a2/}
}
TY  - JOUR
AU  - D. Yu. Grigor'ev
TI  - Complexity of deciding the first-order theory of real closed fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 53
EP  - 100
VL  - 174
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_174_a2/
LA  - ru
ID  - ZNSL_1988_174_a2
ER  - 
%0 Journal Article
%A D. Yu. Grigor'ev
%T Complexity of deciding the first-order theory of real closed fields
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 53-100
%V 174
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_174_a2/
%G ru
%F ZNSL_1988_174_a2
D. Yu. Grigor'ev. Complexity of deciding the first-order theory of real closed fields. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 3, Tome 174 (1988), pp. 53-100. http://geodesic.mathdoc.fr/item/ZNSL_1988_174_a2/