The space of states and wave equation for the boson string with non-trivial topology of the world surface
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 8, Tome 169 (1988), pp. 107-121
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the wave functions of the string with a
nontrivial topology of the world sheet should oe regarded as
sections of linear bundles over the space of conformal classes о
of Riemann surfaces. A BRST operator is constructed for an arbitrary
type of topology, and its geometric interpretation is given.
@article{ZNSL_1988_169_a12,
author = {G. A. Pelts},
title = {The space of states and wave equation for the boson string with non-trivial topology of the world surface},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--121},
publisher = {mathdoc},
volume = {169},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a12/}
}
TY - JOUR AU - G. A. Pelts TI - The space of states and wave equation for the boson string with non-trivial topology of the world surface JO - Zapiski Nauchnykh Seminarov POMI PY - 1988 SP - 107 EP - 121 VL - 169 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a12/ LA - ru ID - ZNSL_1988_169_a12 ER -
G. A. Pelts. The space of states and wave equation for the boson string with non-trivial topology of the world surface. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 8, Tome 169 (1988), pp. 107-121. http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a12/