Direct decompositions of finite rank torsion-free Abelian groups
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 272-285

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $r_1,r_2,\dots,r_s$; $l_1,l_2,\dots,l_t$ are the ranks of the indecomposable summands of two direct decompositions of a torsion-free Abelian group of finite rank and if $s_0$ is the number of units among the numbers $r_i$, while $t_0$ is the number of units among the numbers $l_j$, then $r_i\leq n-t_0$, $l_j\leq n-s_0$ for all $i$, $j$. Moreover, if for some i we have $i$ $r_i=n-t_0$, then among the $l_j$ only one term is different from 1 and it is equal to $n-t_0$; similarly if $l_j=n-s_0$ for some $j$. In addition, a construction is presented, allowing to form, from several indecomposable groups, a new group, called a flower group, and it is proved that a flower group is indecomposable under natural restrictions on its defining parameters.
@article{ZNSL_1987_160_a27,
     author = {A. V. Yakovlev},
     title = {Direct decompositions of finite rank torsion-free {Abelian} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {272--285},
     publisher = {mathdoc},
     volume = {160},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a27/}
}
TY  - JOUR
AU  - A. V. Yakovlev
TI  - Direct decompositions of finite rank torsion-free Abelian groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 272
EP  - 285
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a27/
LA  - ru
ID  - ZNSL_1987_160_a27
ER  - 
%0 Journal Article
%A A. V. Yakovlev
%T Direct decompositions of finite rank torsion-free Abelian groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 272-285
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a27/
%G ru
%F ZNSL_1987_160_a27
A. V. Yakovlev. Direct decompositions of finite rank torsion-free Abelian groups. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 272-285. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a27/