Modules for quadratic extensions of Dedekind rings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\sigma$ be a Dedekind ring, let $Q$ be a maximal order in a quadratic extension $K$ of the field $k$ of quotients of the ring $\sigma$, let $\Lambda$ be a subring of the ring $\sigma$, containing $\sigma$ and such that $\Lambda k=K$. It is proved that $\sigma/\Lambda$is a cyclic $\Lambda$-module. From here there follows, in particular, that each finitely generated torsion-free $\Lambda$-module is a direct sum of modules which are isomorphic to the ideals of ring $\Lambda$.
@article{ZNSL_1987_160_a25,
     author = {D. K. Faddeev},
     title = {Modules for quadratic extensions of {Dedekind} rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {262},
     year = {1987},
     volume = {160},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a25/}
}
TY  - JOUR
AU  - D. K. Faddeev
TI  - Modules for quadratic extensions of Dedekind rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 262
VL  - 160
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a25/
LA  - ru
ID  - ZNSL_1987_160_a25
ER  - 
%0 Journal Article
%A D. K. Faddeev
%T Modules for quadratic extensions of Dedekind rings
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 262
%V 160
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a25/
%G ru
%F ZNSL_1987_160_a25
D. K. Faddeev. Modules for quadratic extensions of Dedekind rings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987). http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a25/