Modules for quadratic extensions of Dedekind rings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987)
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\sigma$ be a Dedekind ring, let $Q$ be a maximal order in a quadratic extension $K$ of the field $k$ of quotients of the ring $\sigma$, let $\Lambda$ be a subring of the ring $\sigma$, containing $\sigma$ and such that $\Lambda k=K$. It is proved that $\sigma/\Lambda$is a cyclic $\Lambda$-module. From here there follows, in particular, that each finitely generated torsion-free $\Lambda$-module is a direct sum of modules which are isomorphic to the ideals of ring $\Lambda$.
@article{ZNSL_1987_160_a25,
author = {D. K. Faddeev},
title = {Modules for quadratic extensions of {Dedekind} rings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {262},
year = {1987},
volume = {160},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a25/}
}
D. K. Faddeev. Modules for quadratic extensions of Dedekind rings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987). http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a25/