Some extremal problems for pairs of functions without common values
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 159-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

By the method of the moduli of families of curves one solves some extremal problems in the family of pairs $\{f_1,f_2\}$ of functions $f_1(z)=\alpha z+\dotsb$, $f_2(z)=\beta z^{-1}+\beta_0+\beta_1z+\dotsb$, with real coefficients, univalent, regular, resp. meromorphic in the circle $\Delta=\{|z|<1\}$ and mapping onto nonoverlapping domains. As a special case the solution of a problem, posed by V.M. Miklyukov in Sib. Mat. Zh., Vol. 18, 1977, No. 5, pp. 1111–1124, is obtained.
@article{ZNSL_1987_160_a14,
     author = {A. Yu. Solynin},
     title = {Some extremal problems for pairs of functions without common values},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--169},
     year = {1987},
     volume = {160},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a14/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Some extremal problems for pairs of functions without common values
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 159
EP  - 169
VL  - 160
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a14/
LA  - ru
ID  - ZNSL_1987_160_a14
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Some extremal problems for pairs of functions without common values
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 159-169
%V 160
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a14/
%G ru
%F ZNSL_1987_160_a14
A. Yu. Solynin. Some extremal problems for pairs of functions without common values. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 8, Tome 160 (1987), pp. 159-169. http://geodesic.mathdoc.fr/item/ZNSL_1987_160_a14/