The resolvent of a Toeplitz operator may have arbitrary growth
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 175-177
Cet article a éte moissonné depuis la source Math-Net.Ru
Fix an arbitrary sequence $\{\lambda_n\}$ in the unit disc such that $\lim_n\lambda_n=1$ and any sequence $\{A_n\}$ of positive reals. Then there exists a continuous real $u$ on the unit circle such that the Toeplitz operator $T_\varphi$ (on the Hardy class $H^2$) with symbol $\varphi=e^{iu}$ satisfies $$ \|(T_\varphi-\lambda_nI)^{-1}\|>A_n $$
@article{ZNSL_1987_157_a18,
author = {S. R. Treil'},
title = {The resolvent of {a~Toeplitz} operator may have arbitrary growth},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--177},
year = {1987},
volume = {157},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a18/}
}
S. R. Treil'. The resolvent of a Toeplitz operator may have arbitrary growth. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 175-177. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a18/