The resolvent of a Toeplitz operator may have arbitrary growth
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 175-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Fix an arbitrary sequence $\{\lambda_n\}$ in the unit disc such that $\lim_n\lambda_n=1$ and any sequence $\{A_n\}$ of positive reals. Then there exists a continuous real $u$ on the unit circle such that the Toeplitz operator $T_\varphi$ (on the Hardy class $H^2$) with symbol $\varphi=e^{iu}$ satisfies $$ \|(T_\varphi-\lambda_nI)^{-1}\|>A_n $$
@article{ZNSL_1987_157_a18,
     author = {S. R. Treil'},
     title = {The resolvent of {a~Toeplitz} operator may have arbitrary growth},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--177},
     year = {1987},
     volume = {157},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a18/}
}
TY  - JOUR
AU  - S. R. Treil'
TI  - The resolvent of a Toeplitz operator may have arbitrary growth
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 175
EP  - 177
VL  - 157
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a18/
LA  - ru
ID  - ZNSL_1987_157_a18
ER  - 
%0 Journal Article
%A S. R. Treil'
%T The resolvent of a Toeplitz operator may have arbitrary growth
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 175-177
%V 157
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a18/
%G ru
%F ZNSL_1987_157_a18
S. R. Treil'. The resolvent of a Toeplitz operator may have arbitrary growth. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 175-177. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a18/