On asymptotic behavior of non-stationary wave field singularities near the space-time caustic
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 98-108
Voir la notice de l'article provenant de la source Math-Net.Ru
Cauchy problem for wave equation in the case of discontinuity on the initial front is investigated. The discontinuity is given by homogeneous generalized function (degree $\lambda$). The transformation of initial front passed the space-time caustic is examined and as a result uniform wave field asymptotics expressed in terms of polynomial Legendre is obtained.
@article{ZNSL_1986_156_a8,
author = {N. Ya. Kirpichnikova},
title = {On asymptotic behavior of non-stationary wave field singularities near the space-time caustic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--108},
publisher = {mathdoc},
volume = {156},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a8/}
}
TY - JOUR AU - N. Ya. Kirpichnikova TI - On asymptotic behavior of non-stationary wave field singularities near the space-time caustic JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 98 EP - 108 VL - 156 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a8/ LA - ru ID - ZNSL_1986_156_a8 ER -
N. Ya. Kirpichnikova. On asymptotic behavior of non-stationary wave field singularities near the space-time caustic. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 98-108. http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a8/