On a~solvability in general on $(0,\infty)$ a~main initial boundary-value problem for two-dimentional equations of Oldroyd fluid
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 69-72

Voir la notice de l'article provenant de la source Math-Net.Ru

For the system $$\begin{cases} \frac{\partial\bar v}{\partial t}+v_k\frac{\partial\bar v}{\partial x_k}-\mu\Delta\bar v-\mathbb K\Delta\bar v+\operatorname{grad} p=\bar f(x,t),\\ \operatorname{div}\bar v=0,\;\mathbb K\bar v=\int_0^tK(t-\tau)v(\tau)\,d\tau,\;K=\sum c_je^{-\zeta_jt},\;c_j,\zeta_j>0 \end{cases}$$ described two-dimentional motion of Oldroyd liquiditis proved a global solvability for $t\in(0,\infty)$.
@article{ZNSL_1986_156_a6,
     author = {N. A. Karazeeva},
     title = {On a~solvability in general on $(0,\infty)$ a~main initial boundary-value problem for two-dimentional equations of {Oldroyd} fluid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {156},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a6/}
}
TY  - JOUR
AU  - N. A. Karazeeva
TI  - On a~solvability in general on $(0,\infty)$ a~main initial boundary-value problem for two-dimentional equations of Oldroyd fluid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 69
EP  - 72
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a6/
LA  - ru
ID  - ZNSL_1986_156_a6
ER  - 
%0 Journal Article
%A N. A. Karazeeva
%T On a~solvability in general on $(0,\infty)$ a~main initial boundary-value problem for two-dimentional equations of Oldroyd fluid
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 69-72
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a6/
%G ru
%F ZNSL_1986_156_a6
N. A. Karazeeva. On a~solvability in general on $(0,\infty)$ a~main initial boundary-value problem for two-dimentional equations of Oldroyd fluid. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 69-72. http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a6/