Scattering by rigid mobile inclusion
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 61-68

Voir la notice de l'article provenant de la source Math-Net.Ru

Long elastic wave scattering by rigid inclusion is investigated. Mobility of the inclusion leads to non-classical boundary conditions. The external solution is the multipole Anzatz. In the neighbourhood of the inclusion elastostatic problems are considered. As a result the integral characteristic of rigid mobile inclusion arises which is the analogy of tensor $e_{ij}$ considered by Polya and Szegö.
@article{ZNSL_1986_156_a5,
     author = {M. I. Ivanov},
     title = {Scattering by rigid mobile inclusion},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--68},
     publisher = {mathdoc},
     volume = {156},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a5/}
}
TY  - JOUR
AU  - M. I. Ivanov
TI  - Scattering by rigid mobile inclusion
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 61
EP  - 68
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a5/
LA  - ru
ID  - ZNSL_1986_156_a5
ER  - 
%0 Journal Article
%A M. I. Ivanov
%T Scattering by rigid mobile inclusion
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 61-68
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a5/
%G ru
%F ZNSL_1986_156_a5
M. I. Ivanov. Scattering by rigid mobile inclusion. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 61-68. http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a5/