Perturbation of the self-adjoint operator by the subordinated symmetric operator.
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 196-198

Voir la notice de l'article provenant de la source Math-Net.Ru

The following variant of the Rellich's theorem is proved. Let $A$, $B$ be the operators in some Hilbert space, $A=A^\ast$, $B\subset B^\ast$ and $D(B)\supset D(A)$. Let us suppose that, with some $\gamma>-1$, $(Bu,u)\geq\gamma(Au,u)$, $\forall u\in D(A)$. Then the operator $A+B$ is self-adjoint on the domain $D(A)$.
@article{ZNSL_1985_147_a17,
     author = {S. A. Yakubov},
     title = {Perturbation of the self-adjoint operator by the subordinated symmetric operator.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--198},
     publisher = {mathdoc},
     volume = {147},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a17/}
}
TY  - JOUR
AU  - S. A. Yakubov
TI  - Perturbation of the self-adjoint operator by the subordinated symmetric operator.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 196
EP  - 198
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a17/
LA  - ru
ID  - ZNSL_1985_147_a17
ER  - 
%0 Journal Article
%A S. A. Yakubov
%T Perturbation of the self-adjoint operator by the subordinated symmetric operator.
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 196-198
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a17/
%G ru
%F ZNSL_1985_147_a17
S. A. Yakubov. Perturbation of the self-adjoint operator by the subordinated symmetric operator.. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 196-198. http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a17/