The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops (DAQL-model)
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 86-108
Voir la notice de l'article provenant de la source Math-Net.Ru
She field theoretical justification of the phenomenological model
of quark loop's anomalies (DAQL-model) is presented in the
framework of quantum chromodynamics in the limit of the infinitely
strong coupling. This model is adequate for the description
of low energy interaction of meaons $J^P=0^+$, $0^-$, $1^-$, $1^+$. Bibl. – 29.
@article{ZNSL_1985_145_a6,
author = {A. N. Ivanov and N. I. Troitskaya},
title = {The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops {(DAQL-model)}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {86--108},
publisher = {mathdoc},
volume = {145},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a6/}
}
TY - JOUR AU - A. N. Ivanov AU - N. I. Troitskaya TI - The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops (DAQL-model) JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 86 EP - 108 VL - 145 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a6/ LA - ru ID - ZNSL_1985_145_a6 ER -
%0 Journal Article %A A. N. Ivanov %A N. I. Troitskaya %T The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops (DAQL-model) %J Zapiski Nauchnykh Seminarov POMI %D 1985 %P 86-108 %V 145 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a6/ %G ru %F ZNSL_1985_145_a6
A. N. Ivanov; N. I. Troitskaya. The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops (DAQL-model). Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 86-108. http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a6/