The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops (DAQL-model)
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 86-108

Voir la notice de l'article provenant de la source Math-Net.Ru

She field theoretical justification of the phenomenological model of quark loop's anomalies (DAQL-model) is presented in the framework of quantum chromodynamics in the limit of the infinitely strong coupling. This model is adequate for the description of low energy interaction of meaons $J^P=0^+$, $0^-$, $1^-$, $1^+$. Bibl. – 29.
@article{ZNSL_1985_145_a6,
     author = {A. N. Ivanov and N. I. Troitskaya},
     title = {The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops {(DAQL-model)}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--108},
     publisher = {mathdoc},
     volume = {145},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a6/}
}
TY  - JOUR
AU  - A. N. Ivanov
AU  - N. I. Troitskaya
TI  - The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops (DAQL-model)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 86
EP  - 108
VL  - 145
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a6/
LA  - ru
ID  - ZNSL_1985_145_a6
ER  - 
%0 Journal Article
%A A. N. Ivanov
%A N. I. Troitskaya
%T The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops (DAQL-model)
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 86-108
%V 145
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a6/
%G ru
%F ZNSL_1985_145_a6
A. N. Ivanov; N. I. Troitskaya. The infinitely strong coupling limit in quantum chromodynamics and the model of dominance of anomalies of quark loops (DAQL-model). Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 86-108. http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a6/