Waring's problem for a ternary quadratic form and an arbitrary even power
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 27-37

Voir la notice de l'article provenant de la source Math-Net.Ru

One obtains asymptotic formulas for the number of solutions of the equation $n=f(x, y, z)+w^{2k}$, where $f$ is a primitive integral quadratic form. One gives an estimate of the remainder, having a logarithmic reducing factor in the general case and a powerlike one when $f(x ,y, z)=x^2+y^2+z^2$.
@article{ZNSL_1985_144_a2,
     author = {E. P. Golubeva},
     title = {Waring's problem for a ternary quadratic form and an arbitrary even power},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {144},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a2/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - Waring's problem for a ternary quadratic form and an arbitrary even power
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 27
EP  - 37
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a2/
LA  - ru
ID  - ZNSL_1985_144_a2
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T Waring's problem for a ternary quadratic form and an arbitrary even power
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 27-37
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a2/
%G ru
%F ZNSL_1985_144_a2
E. P. Golubeva. Waring's problem for a ternary quadratic form and an arbitrary even power. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 27-37. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a2/