Waring's problem for a ternary quadratic form and an arbitrary even power
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 27-37
Voir la notice de l'article provenant de la source Math-Net.Ru
One obtains asymptotic formulas for the number of solutions of the equation $n=f(x, y, z)+w^{2k}$, where $f$ is a primitive integral quadratic form. One gives an estimate of the remainder, having a logarithmic reducing factor in the general case and a powerlike one when $f(x ,y, z)=x^2+y^2+z^2$.
@article{ZNSL_1985_144_a2,
author = {E. P. Golubeva},
title = {Waring's problem for a ternary quadratic form and an arbitrary even power},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--37},
publisher = {mathdoc},
volume = {144},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a2/}
}
E. P. Golubeva. Waring's problem for a ternary quadratic form and an arbitrary even power. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 27-37. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a2/