On the harmonic measure of continua of a fixed diameter
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 146-148
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal{E}$ be the family of all continua $E$ in $\bar{U}\setminus\{0\}$, where $U=\{|z|1\}$, let $U(E)$ be the connected component of $U\setminus E$ containing the point $z=0$, $\omega_E(z_0)=\omega(z_0,E,U(E))$ be the harmonic measure of $E$ relative to the domain $U(E)$ at the point $z_0\in U(E)$. In the paper one answers affirmatively a question raised by B. Rodkin [K.F. Barth, D.A. Branna, and W.K. Hayman, "Research problems in complx analysis,’’ Bull. London Math. Soc.,l6, No. 5, 490–517, 1984]. Namely, one proves that in the family $\mathcal{E}(d_0)$ of continua $E\in\mathcal{E}$, satisfying the condition $\operatorname{diam}E=d_0$, $\quad0$, one has the inequality
$$
\omega_E(0)\geq\frac1\pi\arcsin d_0/2,
$$
one indicates all the cases for which equality prevails.
@article{ZNSL_1985_144_a13,
author = {A. Yu. Solynin},
title = {On the harmonic measure of continua of a fixed diameter},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {146--148},
publisher = {mathdoc},
volume = {144},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a13/}
}
A. Yu. Solynin. On the harmonic measure of continua of a fixed diameter. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 146-148. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a13/