On the harmonic measure of continua of a fixed diameter
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 146-148

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{E}$ be the family of all continua $E$ in $\bar{U}\setminus\{0\}$, where $U=\{|z|1\}$, let $U(E)$ be the connected component of $U\setminus E$ containing the point $z=0$, $\omega_E(z_0)=\omega(z_0,E,U(E))$ be the harmonic measure of $E$ relative to the domain $U(E)$ at the point $z_0\in U(E)$. In the paper one answers affirmatively a question raised by B. Rodkin [K.F. Barth, D.A. Branna, and W.K. Hayman, "Research problems in complx analysis,’’ Bull. London Math. Soc.,l6, No. 5, 490–517, 1984]. Namely, one proves that in the family $\mathcal{E}(d_0)$ of continua $E\in\mathcal{E}$, satisfying the condition $\operatorname{diam}E=d_0$, $\quad0$, one has the inequality $$ \omega_E(0)\geq\frac1\pi\arcsin d_0/2, $$ one indicates all the cases for which equality prevails.
@article{ZNSL_1985_144_a13,
     author = {A. Yu. Solynin},
     title = {On the harmonic measure of continua of a fixed diameter},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--148},
     publisher = {mathdoc},
     volume = {144},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a13/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - On the harmonic measure of continua of a fixed diameter
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 146
EP  - 148
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a13/
LA  - ru
ID  - ZNSL_1985_144_a13
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T On the harmonic measure of continua of a fixed diameter
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 146-148
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a13/
%G ru
%F ZNSL_1985_144_a13
A. Yu. Solynin. On the harmonic measure of continua of a fixed diameter. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 146-148. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a13/