The central limit theorem under the absence of extremal absolute order statistics
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 59-67
Cet article a éte moissonné depuis la source Math-Net.Ru
One finds conditions for the relation $\Delta_{n,r}=o(1)=\nabla_{n,r}$, где $\Delta_{n,r}=\sup_x|P\Big(\frac{S_{n,r}}{a_n}, $S_{n,r}=X_{(1)}+\dots+X_{(n-r)}$, $X_{(1)},\dots,X_{(n)}$ are the absolute order statistics for a repeated sample from a symmetric distribution.
@article{ZNSL_1985_142_a5,
author = {V. A. Egorov},
title = {The central limit theorem under the absence of extremal absolute order statistics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {59--67},
year = {1985},
volume = {142},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a5/}
}
V. A. Egorov. The central limit theorem under the absence of extremal absolute order statistics. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 59-67. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a5/