The central limit theorem under the absence of extremal absolute order statistics
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 59-67
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			One finds conditions for the relation $\Delta_{n,r}=o(1)=\nabla_{n,r}$, где $\Delta_{n,r}=\sup_x|P\Big(\frac{S_{n,r}}{a_n}$, $S_{n,r}=X_{(1)}+\dots+X_{(n-r)}$, $X_{(1)},\dots,X_{(n)}$ are the absolute order statistics for a repeated sample from a symmetric distribution.
			
            
            
            
          
        
      @article{ZNSL_1985_142_a5,
     author = {V. A. Egorov},
     title = {The central limit theorem under the absence of extremal absolute order statistics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--67},
     publisher = {mathdoc},
     volume = {142},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a5/}
}
                      
                      
                    V. A. Egorov. The central limit theorem under the absence of extremal absolute order statistics. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 59-67. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a5/