The central limit theorem under the absence of extremal absolute order statistics
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 59-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One finds conditions for the relation $\Delta_{n,r}=o(1)=\nabla_{n,r}$, где $\Delta_{n,r}=\sup_x|P\Big(\frac{S_{n,r}}{a_n}, $S_{n,r}=X_{(1)}+\dots+X_{(n-r)}$, $X_{(1)},\dots,X_{(n)}$ are the absolute order statistics for a repeated sample from a symmetric distribution.
@article{ZNSL_1985_142_a5,
     author = {V. A. Egorov},
     title = {The central limit theorem under the absence of extremal absolute order statistics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--67},
     year = {1985},
     volume = {142},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a5/}
}
TY  - JOUR
AU  - V. A. Egorov
TI  - The central limit theorem under the absence of extremal absolute order statistics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 59
EP  - 67
VL  - 142
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a5/
LA  - ru
ID  - ZNSL_1985_142_a5
ER  - 
%0 Journal Article
%A V. A. Egorov
%T The central limit theorem under the absence of extremal absolute order statistics
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 59-67
%V 142
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a5/
%G ru
%F ZNSL_1985_142_a5
V. A. Egorov. The central limit theorem under the absence of extremal absolute order statistics. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 59-67. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a5/