Upper bounds for lengthening of proofs after cut-elimination
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part II, Tome 137 (1984), pp. 87-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Define $2_i^n$ by $2_0^n=n$ and $2_{i+1}^n=2^{2_i^n}$. Let $\mathcal D$ be derivation tree of a sequent $S$ in the Gentzen-style calculus for the classical or intuitionistic first-order logic. The main result of the paper: There is a cut-free proof $\mathcal D'$ of $S$ such that the height of $\mathcal D'$ is less than $2^h_l$, where $h$ is the height of $\mathcal D$ and $l$ is the number of different sequents in $\mathcal D$.
@article{ZNSL_1984_137_a4,
     author = {V. P. Orevkov},
     title = {Upper bounds for lengthening of proofs after cut-elimination},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {137},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_137_a4/}
}
TY  - JOUR
AU  - V. P. Orevkov
TI  - Upper bounds for lengthening of proofs after cut-elimination
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 87
EP  - 98
VL  - 137
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_137_a4/
LA  - ru
ID  - ZNSL_1984_137_a4
ER  - 
%0 Journal Article
%A V. P. Orevkov
%T Upper bounds for lengthening of proofs after cut-elimination
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 87-98
%V 137
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_137_a4/
%G ru
%F ZNSL_1984_137_a4
V. P. Orevkov. Upper bounds for lengthening of proofs after cut-elimination. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part II, Tome 137 (1984), pp. 87-98. http://geodesic.mathdoc.fr/item/ZNSL_1984_137_a4/