Upper bounds for lengthening of proofs after cut-elimination
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part II, Tome 137 (1984), pp. 87-98
Voir la notice de l'article provenant de la source Math-Net.Ru
Define $2_i^n$ by $2_0^n=n$ and $2_{i+1}^n=2^{2_i^n}$. Let $\mathcal D$ be derivation tree of a sequent $S$ in the Gentzen-style calculus for the classical or intuitionistic first-order logic. The main result of the paper: There is a cut-free proof $\mathcal D'$ of $S$ such that the height of $\mathcal D'$ is less than $2^h_l$, where $h$ is the height of $\mathcal D$ and $l$ is the number of different sequents in $\mathcal D$.
@article{ZNSL_1984_137_a4,
author = {V. P. Orevkov},
title = {Upper bounds for lengthening of proofs after cut-elimination},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {87--98},
publisher = {mathdoc},
volume = {137},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_137_a4/}
}
V. P. Orevkov. Upper bounds for lengthening of proofs after cut-elimination. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part II, Tome 137 (1984), pp. 87-98. http://geodesic.mathdoc.fr/item/ZNSL_1984_137_a4/