Liouville's theorem and the inverse scattering method
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 113-125

Voir la notice de l'article provenant de la source Math-Net.Ru

On the base of Liouville's theorem, an approach to the integration of the Zakharov–Shabat equations is developed. It arises as a synthesis of ideas of the “finite-gape” integration, the matrix Riemann problem method and the theory of isomonodromic deformations. With the help of this scheme the “dressing procedure” for the Bullough–Dodd equation is obtained.
@article{ZNSL_1984_133_a7,
     author = {A. R. Its},
     title = {Liouville's theorem and the inverse scattering method},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {133},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a7/}
}
TY  - JOUR
AU  - A. R. Its
TI  - Liouville's theorem and the inverse scattering method
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1984
SP  - 113
EP  - 125
VL  - 133
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a7/
LA  - ru
ID  - ZNSL_1984_133_a7
ER  - 
%0 Journal Article
%A A. R. Its
%T Liouville's theorem and the inverse scattering method
%J Zapiski Nauchnykh Seminarov POMI
%D 1984
%P 113-125
%V 133
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a7/
%G ru
%F ZNSL_1984_133_a7
A. R. Its. Liouville's theorem and the inverse scattering method. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VI, Tome 133 (1984), pp. 113-125. http://geodesic.mathdoc.fr/item/ZNSL_1984_133_a7/