Strong coupling limit in quantum chromodynamics and the symplectic symmetry of quark bound states
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 47-71

Voir la notice de l'article provenant de la source Math-Net.Ru

The symplectic group $Sp(2N_fN_c)$ is suggested as the internal group symmetry of quark bound states. $N_f$ is the number of quark flavours and $N_c$ is the number of color degrees of freedom of quark. The effective Lagrangian of quark bound states in the quark-gluon system is constructed in the infinite coupling limit. Some of consequences of the symmetry $Sp(2N_fN_c)$ are considered in the case $N_f=3$.
@article{ZNSL_1983_131_a4,
     author = {A. N. Ivanov and N. I. Troitskaya},
     title = {Strong coupling limit in quantum chromodynamics and the symplectic symmetry of quark bound states},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--71},
     publisher = {mathdoc},
     volume = {131},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a4/}
}
TY  - JOUR
AU  - A. N. Ivanov
AU  - N. I. Troitskaya
TI  - Strong coupling limit in quantum chromodynamics and the symplectic symmetry of quark bound states
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 47
EP  - 71
VL  - 131
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a4/
LA  - ru
ID  - ZNSL_1983_131_a4
ER  - 
%0 Journal Article
%A A. N. Ivanov
%A N. I. Troitskaya
%T Strong coupling limit in quantum chromodynamics and the symplectic symmetry of quark bound states
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 47-71
%V 131
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a4/
%G ru
%F ZNSL_1983_131_a4
A. N. Ivanov; N. I. Troitskaya. Strong coupling limit in quantum chromodynamics and the symplectic symmetry of quark bound states. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 47-71. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a4/