On a~condition of the absence of a~singular continuous spectrum for the Friedrichs model
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 3-6
Voir la notice de l'article provenant de la source Math-Net.Ru
An extension of the analytic dilation or the Mourre commutators methods is proposed. We consider two self-adjoints operators $H=H_0+V$ and $A$. Assuming some smouthness properties of $V$ and $[V, A]$ we prove the absence of singular continuous spectrum of $H$. No positivity of $[H_0, V]$ is required.
@article{ZNSL_1983_127_a0,
author = {A. F. Vakulenko},
title = {On a~condition of the absence of a~singular continuous spectrum for the {Friedrichs} model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {3--6},
publisher = {mathdoc},
volume = {127},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a0/}
}
A. F. Vakulenko. On a~condition of the absence of a~singular continuous spectrum for the Friedrichs model. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 3-6. http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a0/