On a condition of the absence of a singular continuous spectrum for the Friedrichs model
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 3-6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An extension of the analytic dilation or the Mourre commutators methods is proposed. We consider two self-adjoints operators $H=H_0+V$ and $A$. Assuming some smouthness properties of $V$ and $[V, A]$ we prove the absence of singular continuous spectrum of $H$. No positivity of $[H_0, V]$ is required.
@article{ZNSL_1983_127_a0,
     author = {A. F. Vakulenko},
     title = {On a~condition of the absence of a~singular continuous spectrum for the {Friedrichs} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--6},
     year = {1983},
     volume = {127},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a0/}
}
TY  - JOUR
AU  - A. F. Vakulenko
TI  - On a condition of the absence of a singular continuous spectrum for the Friedrichs model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 3
EP  - 6
VL  - 127
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a0/
LA  - ru
ID  - ZNSL_1983_127_a0
ER  - 
%0 Journal Article
%A A. F. Vakulenko
%T On a condition of the absence of a singular continuous spectrum for the Friedrichs model
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 3-6
%V 127
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a0/
%G ru
%F ZNSL_1983_127_a0
A. F. Vakulenko. On a condition of the absence of a singular continuous spectrum for the Friedrichs model. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 3-6. http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a0/