Simple connection between the geometric and the Hamiltonian representations of integrable nonlinear equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 264-273

Voir la notice de l'article provenant de la source Math-Net.Ru

One gives a simple and general derivation of the well-known connection between the geometric and the Hamiltonian approaches in the classical method of the inverse problem. Namely, for the case of a two-dimensional auxiliary problem and periodic boundary conditions it is explicitly shown how the existence of the classical $r$-matrix for the integrable equations leads to their representation in the form of the condition of zero curvature.
@article{ZNSL_1982_115_a21,
     author = {L. A. Takhtadzhyan and L. D. Faddeev},
     title = {Simple connection between the geometric and the {Hamiltonian} representations of integrable nonlinear equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {264--273},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a21/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
AU  - L. D. Faddeev
TI  - Simple connection between the geometric and the Hamiltonian representations of integrable nonlinear equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 264
EP  - 273
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a21/
LA  - ru
ID  - ZNSL_1982_115_a21
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%A L. D. Faddeev
%T Simple connection between the geometric and the Hamiltonian representations of integrable nonlinear equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 264-273
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a21/
%G ru
%F ZNSL_1982_115_a21
L. A. Takhtadzhyan; L. D. Faddeev. Simple connection between the geometric and the Hamiltonian representations of integrable nonlinear equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 264-273. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a21/