Global solutions of nonstationary kinetic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 169-177

Voir la notice de l'article provenant de la source Math-Net.Ru

For the nonstationary Boltzmann equation $$ \frac{\partial F}{\partial t}+\xi_\alpha\frac{\partial F}{\partial x_\alpha}=Q(F,F),\qquad t>0,\quad\xi\in R^3,\quad x\in\Omega\subset R^3, $$ one proves the unique global solvability of the Cauchy problem under nondifferentiable initial data and the unique global solvability of initial-boundary-value problems with homogeneous boundary conditions; it is shown that the solutions of the initial-boundary-value problems decay exponentially as $t\to\infty$.
@article{ZNSL_1982_115_a13,
     author = {N. B. Maslova},
     title = {Global solutions of nonstationary kinetic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--177},
     publisher = {mathdoc},
     volume = {115},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a13/}
}
TY  - JOUR
AU  - N. B. Maslova
TI  - Global solutions of nonstationary kinetic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 169
EP  - 177
VL  - 115
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a13/
LA  - ru
ID  - ZNSL_1982_115_a13
ER  - 
%0 Journal Article
%A N. B. Maslova
%T Global solutions of nonstationary kinetic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 169-177
%V 115
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a13/
%G ru
%F ZNSL_1982_115_a13
N. B. Maslova. Global solutions of nonstationary kinetic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 169-177. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a13/