Global solutions of nonstationary kinetic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 169-177
Voir la notice de l'article provenant de la source Math-Net.Ru
For the nonstationary Boltzmann equation
$$
\frac{\partial F}{\partial t}+\xi_\alpha\frac{\partial F}{\partial x_\alpha}=Q(F,F),\qquad t>0,\quad\xi\in R^3,\quad x\in\Omega\subset R^3,
$$
one proves the unique global solvability of the Cauchy problem under nondifferentiable initial data and the unique global solvability of initial-boundary-value problems with homogeneous boundary conditions; it is shown that the solutions of the initial-boundary-value problems decay exponentially as $t\to\infty$.
@article{ZNSL_1982_115_a13,
author = {N. B. Maslova},
title = {Global solutions of nonstationary kinetic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {169--177},
publisher = {mathdoc},
volume = {115},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a13/}
}
N. B. Maslova. Global solutions of nonstationary kinetic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 14, Tome 115 (1982), pp. 169-177. http://geodesic.mathdoc.fr/item/ZNSL_1982_115_a13/