Equivalence of metric homomorphisms
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 205-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $K$ is an algebra with involution over $k$ and $A$, $B$ are $K$-modules on which are defined $\varepsilon$-Hermitian $K$-invariant forms with values in $k$. Metric homomorphisms of the module $A$ into the module $B$ are called equivalent in the broad sense if one can be obtained from the other by multiplying by automorphisms of both modules, and equivalent in the narrow sense if one can be obtained from the other by multiplying by an automorphism of $B$. Necessary and sufficient conditions are given for the broad and narrow equivalence of two metric homomorphisms of one semisimple module of finite length into another. As a consequence, a classification of representations of one quadratic form by means of another is obtained.
@article{ZNSL_1982_114_a19,
     author = {E. V. Schelkanova},
     title = {Equivalence of metric homomorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {205--210},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a19/}
}
TY  - JOUR
AU  - E. V. Schelkanova
TI  - Equivalence of metric homomorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 205
EP  - 210
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a19/
LA  - ru
ID  - ZNSL_1982_114_a19
ER  - 
%0 Journal Article
%A E. V. Schelkanova
%T Equivalence of metric homomorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 205-210
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a19/
%G ru
%F ZNSL_1982_114_a19
E. V. Schelkanova. Equivalence of metric homomorphisms. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 205-210. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a19/