Independence in hypergraphs
Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 196-204

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose an integral function $\gamma(|A|)\geqslant q_1$ defined on the subsets of edges of a hypergraph $(X,U,\Gamma)$ satisfies the following two conditions: 1) any set $W\subseteq U$ such that $|\Gamma A|\geqslant\gamma(|A|)$ for any $A\subseteq W$ is matroidally independent; 2) if $W$ is an independent set, then there exists a unique partition $W=T_1+T_2+\dots+T_v$ such that $|\Gamma T_i|=\gamma(|T_i|)$, $i\in1:v$, and for any $A\subseteq W$, $|\Gamma A|=\gamma(|A|)$ there exists a $T_i$ such that $A\subseteq T_i$. The form of such a function is found, in terms of parameters of generalized connected components, hypercycles, and hypertrees.
@article{ZNSL_1982_114_a18,
     author = {Yu. A. Sushkov},
     title = {Independence in hypergraphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {196--204},
     publisher = {mathdoc},
     volume = {114},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a18/}
}
TY  - JOUR
AU  - Yu. A. Sushkov
TI  - Independence in hypergraphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 196
EP  - 204
VL  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a18/
LA  - ru
ID  - ZNSL_1982_114_a18
ER  - 
%0 Journal Article
%A Yu. A. Sushkov
%T Independence in hypergraphs
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 196-204
%V 114
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a18/
%G ru
%F ZNSL_1982_114_a18
Yu. A. Sushkov. Independence in hypergraphs. Zapiski Nauchnykh Seminarov POMI, Modules and algebraic groups, Tome 114 (1982), pp. 196-204. http://geodesic.mathdoc.fr/item/ZNSL_1982_114_a18/