Dominating sets of frequencies in spectrums of measures with finite energy
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 222-227
Cet article a éte moissonné depuis la source Math-Net.Ru
A subset $\Lambda$ of $\mathbb Z$ is called a dominating set if every measure $\mu$, satisfying $\sum_{n\in\Lambda\setminus\{0\}}(|\hat\mu(n)|^2)(|n|)<+\infty$, has a finite energy $\varepsilon(\mu)=\sum_{n\in\mathbb Z\setminus\{0\}}(|\hat\mu(n)|^2)(|n|)<+\infty$. It is proved that a low density of a dominating set is positive and for every $\varepsilon>0$ there is a dominating set $\Lambda$, $\Lambda\subset\mathbb Z_+$, whose density is smaller than $\varepsilon$.
@article{ZNSL_1982_107_a18,
author = {S. V. Khrushchev},
title = {Dominating sets of frequencies in spectrums of measures with finite energy},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {222--227},
year = {1982},
volume = {107},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a18/}
}
S. V. Khrushchev. Dominating sets of frequencies in spectrums of measures with finite energy. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 222-227. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a18/