Dominating sets of frequencies in spectrums of measures with finite energy
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 222-227
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A subset $\Lambda$ of $\mathbb Z$ is called a dominating set if every measure $\mu$, satisfying 
$\sum_{n\in\Lambda\setminus\{0\}}(|\hat\mu(n)|^2)(|n|)+\infty$, has a finite energy $\varepsilon(\mu)=\sum_{n\in\mathbb Z\setminus\{0\}}(|\hat\mu(n)|^2)(|n|)+\infty$. It is proved that a low density of a dominating set is positive and for every $\varepsilon>0$ there is a dominating set $\Lambda$, $\Lambda\subset\mathbb Z_+$, whose density is smaller than $\varepsilon$.
			
            
            
            
          
        
      @article{ZNSL_1982_107_a18,
     author = {S. V. Khrushchev},
     title = {Dominating sets of frequencies in spectrums of measures with finite energy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--227},
     publisher = {mathdoc},
     volume = {107},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a18/}
}
                      
                      
                    S. V. Khrushchev. Dominating sets of frequencies in spectrums of measures with finite energy. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 222-227. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a18/