Dominating sets of frequencies in spectrums of measures with finite energy
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 222-227

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $\Lambda$ of $\mathbb Z$ is called a dominating set if every measure $\mu$, satisfying $\sum_{n\in\Lambda\setminus\{0\}}(|\hat\mu(n)|^2)(|n|)+\infty$, has a finite energy $\varepsilon(\mu)=\sum_{n\in\mathbb Z\setminus\{0\}}(|\hat\mu(n)|^2)(|n|)+\infty$. It is proved that a low density of a dominating set is positive and for every $\varepsilon>0$ there is a dominating set $\Lambda$, $\Lambda\subset\mathbb Z_+$, whose density is smaller than $\varepsilon$.
@article{ZNSL_1982_107_a18,
     author = {S. V. Khrushchev},
     title = {Dominating sets of frequencies in spectrums of measures with finite energy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--227},
     publisher = {mathdoc},
     volume = {107},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a18/}
}
TY  - JOUR
AU  - S. V. Khrushchev
TI  - Dominating sets of frequencies in spectrums of measures with finite energy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 222
EP  - 227
VL  - 107
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a18/
LA  - ru
ID  - ZNSL_1982_107_a18
ER  - 
%0 Journal Article
%A S. V. Khrushchev
%T Dominating sets of frequencies in spectrums of measures with finite energy
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 222-227
%V 107
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a18/
%G ru
%F ZNSL_1982_107_a18
S. V. Khrushchev. Dominating sets of frequencies in spectrums of measures with finite energy. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part X, Tome 107 (1982), pp. 222-227. http://geodesic.mathdoc.fr/item/ZNSL_1982_107_a18/