The Field of Nonregular Short Wave scattered by a~Smooth Convex Object in Penumbra
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 12, Tome 117 (1981), pp. 13-26
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper presents asymptotic formula for the field nearly the edge of caustic partially overshuded by a smooth convex object. Tht formula bears resemblance to famous Kravtsov–Ludwig expansions at a caustic, incomplete Airy functions are involved.
@article{ZNSL_1981_117_a1,
author = {I. Y. Bylyi},
title = {The {Field} of {Nonregular} {Short} {Wave} scattered by {a~Smooth} {Convex} {Object} in {Penumbra}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {13--26},
publisher = {mathdoc},
volume = {117},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_117_a1/}
}
I. Y. Bylyi. The Field of Nonregular Short Wave scattered by a~Smooth Convex Object in Penumbra. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 12, Tome 117 (1981), pp. 13-26. http://geodesic.mathdoc.fr/item/ZNSL_1981_117_a1/