Certain analogues of the Hardy–Litlewood problem and density methods
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 121-142
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Applying density methods of the theory of the Dirichlet $L$-functions, one finds an asymptotic formula for the number of solutions of the equations of the type $N=\varphi(x,y)+m$ and $N=m-\varphi(x,y)$, where $\varphi(x,y)$ is a positive primitive quadratic form, while $m$ is representable by a sum of two squares and runs through its values without repetition.
@article{ZNSL_1981_112_a9,
     author = {F. B. Koval'chik},
     title = {Certain analogues of the {Hardy{\textendash}Litlewood} problem and density methods},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--142},
     year = {1981},
     volume = {112},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a9/}
}
TY  - JOUR
AU  - F. B. Koval'chik
TI  - Certain analogues of the Hardy–Litlewood problem and density methods
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 121
EP  - 142
VL  - 112
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a9/
LA  - ru
ID  - ZNSL_1981_112_a9
ER  - 
%0 Journal Article
%A F. B. Koval'chik
%T Certain analogues of the Hardy–Litlewood problem and density methods
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 121-142
%V 112
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a9/
%G ru
%F ZNSL_1981_112_a9
F. B. Koval'chik. Certain analogues of the Hardy–Litlewood problem and density methods. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 121-142. http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a9/