Certain analogues of the Hardy--Litlewood problem and density methods
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 121-142

Voir la notice de l'article provenant de la source Math-Net.Ru

Applying density methods of the theory of the Dirichlet $L$-functions, one finds an asymptotic formula for the number of solutions of the equations of the type $N=\varphi(x,y)+m$ and $N=m-\varphi(x,y)$, where $\varphi(x,y)$ is a positive primitive quadratic form, while $m$ is representable by a sum of two squares and runs through its values without repetition.
@article{ZNSL_1981_112_a9,
     author = {F. B. Koval'chik},
     title = {Certain analogues of the {Hardy--Litlewood} problem and density methods},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--142},
     publisher = {mathdoc},
     volume = {112},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a9/}
}
TY  - JOUR
AU  - F. B. Koval'chik
TI  - Certain analogues of the Hardy--Litlewood problem and density methods
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 121
EP  - 142
VL  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a9/
LA  - ru
ID  - ZNSL_1981_112_a9
ER  - 
%0 Journal Article
%A F. B. Koval'chik
%T Certain analogues of the Hardy--Litlewood problem and density methods
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 121-142
%V 112
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a9/
%G ru
%F ZNSL_1981_112_a9
F. B. Koval'chik. Certain analogues of the Hardy--Litlewood problem and density methods. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 121-142. http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a9/