On the coincidence of two crossnorms connected with the order
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 307-311
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $E$ be an ordered normed space and $X$ be an arbitrary normed space. The following two crossnorms are considered: for
\begin{gather*}
n_E(z)=\inf\biggl\{\|u\|:\sum_{k=1}^ne_k\langle x_k,x^*\rangle\le u,\ z=\sum_{k=1}^ne_k\otimes x_k,\ x^*\in X,\ \|x^*\|\le1\biggr\},
\\
k_E(z)=\inf\biggl\{\biggl\|\sum_{k=1}^ne_k\|x_k\|\biggr\|:z=\sum_{k=1}^ne_n\otimes x_k,\ e_k\ge0\biggr\}.
\end{gather*} Theorem 1. The following conditions are equivalent:
1) for every normed space $X$ and every $z\in E\otimes X$ we have $n_E(z)=k_E(z)$.
2) $E$ has the Riesz interpolation property.
			
            
            
            
          
        
      @article{ZNSL_1979_92_a25,
     author = {V. T. Khudalov},
     title = {On the coincidence of two crossnorms connected with the order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {307--311},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a25/}
}
                      
                      
                    V. T. Khudalov. On the coincidence of two crossnorms connected with the order. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 307-311. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a25/