The absence of local unconditional structure in some spaces of operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 300-306

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following. Theorem 1. {\it Let Banach spaces $X_n$, $Y_m$ have monotone unconditional bases $\{x_i\}_{i=1}^n$, $\{y_j\}_{j=1}^m$ resp., let $[\mathfrak A,\alpha]$ be a Banach ideal of operators, $S\in L(X_n,Y_m)$, $y'_j(Sx_i)=\pm1$. Then $$ \chi(\mathfrak A(X_n,Y_m))\ge\frac{mn}{9\alpha(S)\|X_n\|\cdot\|Y_m^*\|}, $$ where $\|X_n\|=\|x_1+\dots+x_n\|$, $\|Y_m^*\|=\|y'_1+\dots+y'_m\|$, and $\chi(E)$ denotes the local unconditional constant of $E$. Using this theorem we can ascertain the absence of local unconditional structure in some spaces of operators (see theorem 2 and propositions 1–7). In particular $\prod_p(\ell_n,\ell_v)$, $N_p(\ell_u,\ell_v)$ have no local unconditional structure provided $\max(1/2,1/p)1/u'$ or $\max(1/2,1/p')1/v'$, $1$}.
@article{ZNSL_1979_92_a24,
     author = {V. G. Samarskii},
     title = {The absence of local unconditional structure in some spaces of operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {300--306},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a24/}
}
TY  - JOUR
AU  - V. G. Samarskii
TI  - The absence of local unconditional structure in some spaces of operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 300
EP  - 306
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a24/
LA  - ru
ID  - ZNSL_1979_92_a24
ER  - 
%0 Journal Article
%A V. G. Samarskii
%T The absence of local unconditional structure in some spaces of operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 300-306
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a24/
%G ru
%F ZNSL_1979_92_a24
V. G. Samarskii. The absence of local unconditional structure in some spaces of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 300-306. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a24/