The absence of local unconditional structure in some spaces of operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 300-306
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following.
Theorem 1. {\it Let Banach spaces $X_n$, $Y_m$ have monotone unconditional bases $\{x_i\}_{i=1}^n$, $\{y_j\}_{j=1}^m$ resp., let $[\mathfrak A,\alpha]$ be a Banach ideal of operators, $S\in L(X_n,Y_m)$, $y'_j(Sx_i)=\pm1$. Then
$$
\chi(\mathfrak A(X_n,Y_m))\ge\frac{mn}{9\alpha(S)\|X_n\|\cdot\|Y_m^*\|},
$$
where $\|X_n\|=\|x_1+\dots+x_n\|$, $\|Y_m^*\|=\|y'_1+\dots+y'_m\|$, and $\chi(E)$ denotes the local unconditional constant of $E$.
Using this theorem we can ascertain the absence of local unconditional structure in some spaces of operators (see theorem 2 and propositions 1–7). In particular $\prod_p(\ell_n,\ell_v)$,
$N_p(\ell_u,\ell_v)$ have no local unconditional structure provided $\max(1/2,1/p)1/u'$ or $\max(1/2,1/p')1/v'$, $1$}.
@article{ZNSL_1979_92_a24,
author = {V. G. Samarskii},
title = {The absence of local unconditional structure in some spaces of operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {300--306},
publisher = {mathdoc},
volume = {92},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a24/}
}
V. G. Samarskii. The absence of local unconditional structure in some spaces of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 300-306. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a24/