On hereditarily dentable sets in Banach spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 294-299

Voir la notice de l'article provenant de la source Math-Net.Ru

The note deals with closed convex bounded hereditarily dentable sets in Banach spaces. As an example let us cite the following result: a closed convex bounded set $B$ is hereditarily dentable iff it is hereditarily $f$-dentable (i.e. $\forall K\subset B$, $\forall\varepsilon>0$, $\exists z\in K$: $z\not\in\mathrm{co} (K\setminus\{x\|x-z\|\le\varepsilon\}))$ and iff each closed subset of $B$ has an extreme point. The proof of the first equivalence (which is the main theorem of the paper) is based only on the definition of dentability and differs essen-tially from the Davis–Phelps proof for the special case $B=\{x:\|x\|\le1\}$.
@article{ZNSL_1979_92_a23,
     author = {O. I. Reinov},
     title = {On hereditarily dentable sets in {Banach} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {294--299},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a23/}
}
TY  - JOUR
AU  - O. I. Reinov
TI  - On hereditarily dentable sets in Banach spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 294
EP  - 299
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a23/
LA  - ru
ID  - ZNSL_1979_92_a23
ER  - 
%0 Journal Article
%A O. I. Reinov
%T On hereditarily dentable sets in Banach spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 294-299
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a23/
%G ru
%F ZNSL_1979_92_a23
O. I. Reinov. On hereditarily dentable sets in Banach spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 294-299. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a23/