Lower bounds for lengthening of proofs after cut-elimination
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 137-162
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C_k^*$ be the formula
\begin{align}
\forall b_0((\forall w_0\exists v_0 P(w_0,b_0,v_0)
\\forall uvw(\exists y(P(y,b_0,u)\\exists z(P(v,y,z)\notag\\
\ P(z,y,w)))\supset P(v,u,w)))\supset\exists v_k(P(b_0,b_0,v_k)\notag\\
\\exists v_{k+1}(P(b_0,v_k,V_{k-1})\\dots\exists v_0 P(b_0,v_1,v_0)\dots))).\notag
\end{align}
and let $LK$ be the Gentzen system for classical predicate calculus. Given a sequent calculus $\mathfrak P$ let $\mathfrak P\vdash_nS$ mean that $S$ has a proof in $\mathfrak P$ of at most $n$, sequent occurrences.
The main aim of the paper is to show that
(a) there is a linear function $l$ such that $LK\vdash_{l(k)}C_k^*$,
(b) there is no Kalmar elementary function $f$ with $(LK-\operatorname{cut})\vdash_{f(k)}C_k^*$.
In particular $LK\vdash_{253}C_6^*$ but $\rceil C_6^*$ does not have a refutation in resolution method with less than $10^{19200}$ clauses.
@article{ZNSL_1979_88_a10,
author = {V. P. Orevkov},
title = {Lower bounds for lengthening of proofs after cut-elimination},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--162},
publisher = {mathdoc},
volume = {88},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a10/}
}
V. P. Orevkov. Lower bounds for lengthening of proofs after cut-elimination. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 137-162. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a10/