Lower bounds for lengthening of proofs after cut-elimination
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 137-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C_k^*$ be the formula \begin{align} \forall b_0((\forall w_0\exists v_0 P(w_0,b_0,v_0) \\forall uvw(\exists y(P(y,b_0,u)\\exists z(P(v,y,z)\notag\\ \ P(z,y,w)))\supset P(v,u,w)))\supset\exists v_k(P(b_0,b_0,v_k)\notag\\ \\exists v_{k+1}(P(b_0,v_k,V_{k-1})\\dots\exists v_0 P(b_0,v_1,v_0)\dots))).\notag \end{align} and let $LK$ be the Gentzen system for classical predicate calculus. Given a sequent calculus $\mathfrak P$ let $\mathfrak P\vdash_nS$ mean that $S$ has a proof in $\mathfrak P$ of at most $n$, sequent occurrences. The main aim of the paper is to show that (a) there is a linear function $l$ such that $LK\vdash_{l(k)}C_k^*$, (b) there is no Kalmar elementary function $f$ with $(LK-\operatorname{cut})\vdash_{f(k)}C_k^*$. In particular $LK\vdash_{253}C_6^*$ but $\rceil C_6^*$ does not have a refutation in resolution method with less than $10^{19200}$ clauses.
@article{ZNSL_1979_88_a10,
     author = {V. P. Orevkov},
     title = {Lower bounds for lengthening of proofs after cut-elimination},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--162},
     publisher = {mathdoc},
     volume = {88},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a10/}
}
TY  - JOUR
AU  - V. P. Orevkov
TI  - Lower bounds for lengthening of proofs after cut-elimination
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 137
EP  - 162
VL  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a10/
LA  - ru
ID  - ZNSL_1979_88_a10
ER  - 
%0 Journal Article
%A V. P. Orevkov
%T Lower bounds for lengthening of proofs after cut-elimination
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 137-162
%V 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a10/
%G ru
%F ZNSL_1979_88_a10
V. P. Orevkov. Lower bounds for lengthening of proofs after cut-elimination. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 137-162. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a10/