Conjugacy of net subgroups of linear groups
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 11-18
Voir la notice de l'article provenant de la source Math-Net.Ru
For the full linear group over a matrix-local ring whose quotient by the Jacobson radical is not the field of two elements, we settle the question of the conjugacy of $D$-net subgroups (Ref. Zh. Mat., 1977, 2A280). Two $D$-net subgroups are conjugate if and only if the $D$-nets defining them are similar (i.e., can be transformed into each other by a permutation matrix). An analogous result is obtained for $D$-net subgroups of the symplectic group over a commutative local ring whose residue field contains more than three elements.
@article{ZNSL_1979_86_a1,
author = {Z. I. Borevich and E. V. Dybkova and L. Yu. Kolotilina},
title = {Conjugacy of net subgroups of linear groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {11--18},
publisher = {mathdoc},
volume = {86},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a1/}
}
Z. I. Borevich; E. V. Dybkova; L. Yu. Kolotilina. Conjugacy of net subgroups of linear groups. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 11-18. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a1/