Conjugacy of net subgroups of linear groups
Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 11-18

Voir la notice de l'article provenant de la source Math-Net.Ru

For the full linear group over a matrix-local ring whose quotient by the Jacobson radical is not the field of two elements, we settle the question of the conjugacy of $D$-net subgroups (Ref. Zh. Mat., 1977, 2A280). Two $D$-net subgroups are conjugate if and only if the $D$-nets defining them are similar (i.e., can be transformed into each other by a permutation matrix). An analogous result is obtained for $D$-net subgroups of the symplectic group over a commutative local ring whose residue field contains more than three elements.
@article{ZNSL_1979_86_a1,
     author = {Z. I. Borevich and E. V. Dybkova and L. Yu. Kolotilina},
     title = {Conjugacy of net subgroups of linear groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--18},
     publisher = {mathdoc},
     volume = {86},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a1/}
}
TY  - JOUR
AU  - Z. I. Borevich
AU  - E. V. Dybkova
AU  - L. Yu. Kolotilina
TI  - Conjugacy of net subgroups of linear groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 11
EP  - 18
VL  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a1/
LA  - ru
ID  - ZNSL_1979_86_a1
ER  - 
%0 Journal Article
%A Z. I. Borevich
%A E. V. Dybkova
%A L. Yu. Kolotilina
%T Conjugacy of net subgroups of linear groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 11-18
%V 86
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a1/
%G ru
%F ZNSL_1979_86_a1
Z. I. Borevich; E. V. Dybkova; L. Yu. Kolotilina. Conjugacy of net subgroups of linear groups. Zapiski Nauchnykh Seminarov POMI, Algebraic numbers and finite groups, Tome 86 (1979), pp. 11-18. http://geodesic.mathdoc.fr/item/ZNSL_1979_86_a1/