Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 7-15
Cet article a éte moissonné depuis la source Math-Net.Ru
Methods of the qualitative theory of differential equations are applied to the homogeneous cosmological models and to a star explosion model in the classical dynamics of gases. Strongly degenerate singular points of these dynamical systems are studied using special coordinate transformations ($\sigma$-process). Trajectories are approximated by the sequences of separatrices for the non-degenerate singular points. Limit cycles are studied.
@article{ZNSL_1979_84_a1,
author = {O. I. Bogoyavlenskii and S. P. Novikov},
title = {Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--15},
year = {1979},
volume = {84},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/}
}
TY - JOUR AU - O. I. Bogoyavlenskii AU - S. P. Novikov TI - Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 7 EP - 15 VL - 84 UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/ LA - ru ID - ZNSL_1979_84_a1 ER -
O. I. Bogoyavlenskii; S. P. Novikov. Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 7-15. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/