Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 7-15
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Methods of the qualitative theory of differential equations are applied to the homogeneous cosmological models and to a star explosion model in the classical dynamics of gases. Strongly degenerate singular points of these dynamical systems are studied using special coordinate transformations ($\sigma$-process). Trajectories are approximated by the sequences of separatrices for the non-degenerate singular points. Limit cycles are studied.
			
            
            
            
          
        
      @article{ZNSL_1979_84_a1,
     author = {O. I. Bogoyavlenskii and S. P. Novikov},
     title = {Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/}
}
                      
                      
                    TY - JOUR AU - O. I. Bogoyavlenskii AU - S. P. Novikov TI - Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 7 EP - 15 VL - 84 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/ LA - ru ID - ZNSL_1979_84_a1 ER -
O. I. Bogoyavlenskii; S. P. Novikov. Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 7-15. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/