Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 7-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of the qualitative theory of differential equations are applied to the homogeneous cosmological models and to a star explosion model in the classical dynamics of gases. Strongly degenerate singular points of these dynamical systems are studied using special coordinate transformations ($\sigma$-process). Trajectories are approximated by the sequences of separatrices for the non-degenerate singular points. Limit cycles are studied.
@article{ZNSL_1979_84_a1,
     author = {O. I. Bogoyavlenskii and S. P. Novikov},
     title = {Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {84},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
AU  - S. P. Novikov
TI  - Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 7
EP  - 15
VL  - 84
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/
LA  - ru
ID  - ZNSL_1979_84_a1
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%A S. P. Novikov
%T Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 7-15
%V 84
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/
%G ru
%F ZNSL_1979_84_a1
O. I. Bogoyavlenskii; S. P. Novikov. Finite-dimensional oscillatory models in the general relativity theory and in gas dynamics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 11, Tome 84 (1979), pp. 7-15. http://geodesic.mathdoc.fr/item/ZNSL_1979_84_a1/