Nonexistence of locally flat approximations in codimension two
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part III, Tome 83 (1979), pp. 93-100

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that for any $n\geqslant6$ there exists a closed, piecewise-linearly imbedded in $E^n$ manifold $M_{pL}^{n-2}$, not admitting locally flat approximations. This manifold can be assumed, here, to be homotopically not equivalent to a smooth one if $n\geqslant10$. We also prove that for any $n\geqslant7$ there exists a closed topological manifold $M^{n-2}_{\mathrm{TOP}}\subset E^n$ not admitting locally flat approximation. This manifold can be assumed to be homotopically not equivalent with a piecewise-linear one.
@article{ZNSL_1979_83_a5,
     author = {M. A. Shtan'ko},
     title = {Nonexistence of locally flat approximations in codimension two},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {83},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a5/}
}
TY  - JOUR
AU  - M. A. Shtan'ko
TI  - Nonexistence of locally flat approximations in codimension two
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 93
EP  - 100
VL  - 83
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a5/
LA  - ru
ID  - ZNSL_1979_83_a5
ER  - 
%0 Journal Article
%A M. A. Shtan'ko
%T Nonexistence of locally flat approximations in codimension two
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 93-100
%V 83
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a5/
%G ru
%F ZNSL_1979_83_a5
M. A. Shtan'ko. Nonexistence of locally flat approximations in codimension two. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part III, Tome 83 (1979), pp. 93-100. http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a5/