Nonexistence of locally flat approximations in codimension two
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part III, Tome 83 (1979), pp. 93-100
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that for any $n\geqslant6$ there exists a closed, piecewise-linearly imbedded in $E^n$ manifold $M_{pL}^{n-2}$, not admitting locally flat approximations. This manifold can be assumed, here, to be homotopically not equivalent to a smooth one if $n\geqslant10$. We also prove that for any $n\geqslant7$ there exists a closed topological manifold $M^{n-2}_{\mathrm{TOP}}\subset E^n$ not admitting locally flat approximation. This manifold can be assumed to be homotopically not equivalent with a piecewise-linear one.
@article{ZNSL_1979_83_a5,
author = {M. A. Shtan'ko},
title = {Nonexistence of locally flat approximations in codimension two},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {93--100},
publisher = {mathdoc},
volume = {83},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a5/}
}
M. A. Shtan'ko. Nonexistence of locally flat approximations in codimension two. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part III, Tome 83 (1979), pp. 93-100. http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a5/