Generalization of istratescu's theorem on contractive mappings in metric spaces
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part III, Tome 83 (1979), pp. 73-82

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider mappings $T\colon X\to X$ of metric spaces, satisfying the condition: $$ d(T_x,T_y)\leqslant\omega(\alpha_1d(x,y)+\alpha_2d(x,Tx)+\alpha_3d(y,Ty)+\alpha_4d(x,Ty)+\alpha_5d(y,Tx), $$ where $\omega$ is some right semicontinuous function. We prove that if $\omega$ is a nondecreasing function, $\omega(r)$ for $r>0$, $r-\omega(r)\to\infty$ as $r\to\infty$, $\sum^5_{i=1}\alpha_i(x,y)\leqslant1$, then the map $T$ has a fixed point $\xi$ and $\lim_{n\to\infty}T^nx=\xi$ for any point $x\in X$. Interesting examples are given.
@article{ZNSL_1979_83_a3,
     author = {M. L. Katkov},
     title = {Generalization of istratescu's theorem on contractive mappings in metric spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {83},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a3/}
}
TY  - JOUR
AU  - M. L. Katkov
TI  - Generalization of istratescu's theorem on contractive mappings in metric spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 73
EP  - 82
VL  - 83
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a3/
LA  - ru
ID  - ZNSL_1979_83_a3
ER  - 
%0 Journal Article
%A M. L. Katkov
%T Generalization of istratescu's theorem on contractive mappings in metric spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 73-82
%V 83
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a3/
%G ru
%F ZNSL_1979_83_a3
M. L. Katkov. Generalization of istratescu's theorem on contractive mappings in metric spaces. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part III, Tome 83 (1979), pp. 73-82. http://geodesic.mathdoc.fr/item/ZNSL_1979_83_a3/