Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 211-219
Voir la notice de l'article provenant de la source Math-Net.Ru
The diffraction of a plane wave by a parabolic cylinder with arbitrary maximal curvature is considered. The continuous transition from the description of diffraction by a smooth body to the description of diffraction by a half plane is traced for the example of this problem. An estimate of the error of the asymptotic formulas for the reflected wave is obtained as a result of numerical analysis.
@article{ZNSL_1978_78_a15,
author = {V. N. Tarasov},
title = {Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {211--219},
publisher = {mathdoc},
volume = {78},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a15/}
}
TY - JOUR AU - V. N. Tarasov TI - Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature JO - Zapiski Nauchnykh Seminarov POMI PY - 1978 SP - 211 EP - 219 VL - 78 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a15/ LA - ru ID - ZNSL_1978_78_a15 ER -
%0 Journal Article %A V. N. Tarasov %T Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature %J Zapiski Nauchnykh Seminarov POMI %D 1978 %P 211-219 %V 78 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a15/ %G ru %F ZNSL_1978_78_a15
V. N. Tarasov. Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 211-219. http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a15/