Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 211-219

Voir la notice de l'article provenant de la source Math-Net.Ru

The diffraction of a plane wave by a parabolic cylinder with arbitrary maximal curvature is considered. The continuous transition from the description of diffraction by a smooth body to the description of diffraction by a half plane is traced for the example of this problem. An estimate of the error of the asymptotic formulas for the reflected wave is obtained as a result of numerical analysis.
@article{ZNSL_1978_78_a15,
     author = {V. N. Tarasov},
     title = {Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {78},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a15/}
}
TY  - JOUR
AU  - V. N. Tarasov
TI  - Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1978
SP  - 211
EP  - 219
VL  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a15/
LA  - ru
ID  - ZNSL_1978_78_a15
ER  - 
%0 Journal Article
%A V. N. Tarasov
%T Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature
%J Zapiski Nauchnykh Seminarov POMI
%D 1978
%P 211-219
%V 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a15/
%G ru
%F ZNSL_1978_78_a15
V. N. Tarasov. Numerical analysis of the asymptotic formulas for the wave field reflected from a cylindrical surface with arbitrary maximal curvature. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 9, Tome 78 (1978), pp. 211-219. http://geodesic.mathdoc.fr/item/ZNSL_1978_78_a15/