An indeterminate equation
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 163-166
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that on the curve
$$
x_0^2+x_1^2=t(x^2_2-x_3^2),\quad t(x_0^2-x_1^2)=x_2^2+x_3^2
$$
there are no $k(t)$ – rational points; here $k$ is an algebraically closed field.
@article{ZNSL_1977_67_a7,
author = {V. A. Dem'yanenko},
title = {An indeterminate equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {163--166},
publisher = {mathdoc},
volume = {67},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a7/}
}
V. A. Dem'yanenko. An indeterminate equation. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 163-166. http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a7/