An indeterminate equation
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 163-166

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that on the curve $$ x_0^2+x_1^2=t(x^2_2-x_3^2),\quad t(x_0^2-x_1^2)=x_2^2+x_3^2 $$ there are no $k(t)$ – rational points; here $k$ is an algebraically closed field.
@article{ZNSL_1977_67_a7,
     author = {V. A. Dem'yanenko},
     title = {An indeterminate equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--166},
     publisher = {mathdoc},
     volume = {67},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a7/}
}
TY  - JOUR
AU  - V. A. Dem'yanenko
TI  - An indeterminate equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 163
EP  - 166
VL  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a7/
LA  - ru
ID  - ZNSL_1977_67_a7
ER  - 
%0 Journal Article
%A V. A. Dem'yanenko
%T An indeterminate equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 163-166
%V 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a7/
%G ru
%F ZNSL_1977_67_a7
V. A. Dem'yanenko. An indeterminate equation. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 163-166. http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a7/