Application of fields formed by the Gauss periods to the investigation of cyclic diophantine equations
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 201-222

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the nonsolvability of the equation $$ Z^*_l(x_0,x_1,\dots,x_t)=\prod^{l-1}_{i=0}\sum^t_{j=0}x_j\zeta^{ij}=Dl^wx^l,\quad (D\varphi(D)z,l)=1 $$ in rational integers $x_0,x_1,\dots,x_t,z$ satisfying certain additional conditions is investigated. Two cases are considered: 1) $l$ is a regular prime number and $0$; 2) $l$ is an irregular prime number, $l=fe+1$ ($f$ is prime), $l>c_0(f,t)$ and $l$ does not divide the Bernoulli numbers $B_{fk+1}$ ($k=1,3,\dots,e-1$), $B_{2fk}$ ($k=1,2,\dots,\frac{e}{2}-1$).
@article{ZNSL_1977_67_a11,
     author = {A. V. Tolstikov},
     title = {Application of fields formed by the {Gauss} periods to the investigation of cyclic diophantine equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {201--222},
     publisher = {mathdoc},
     volume = {67},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a11/}
}
TY  - JOUR
AU  - A. V. Tolstikov
TI  - Application of fields formed by the Gauss periods to the investigation of cyclic diophantine equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1977
SP  - 201
EP  - 222
VL  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a11/
LA  - ru
ID  - ZNSL_1977_67_a11
ER  - 
%0 Journal Article
%A A. V. Tolstikov
%T Application of fields formed by the Gauss periods to the investigation of cyclic diophantine equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1977
%P 201-222
%V 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a11/
%G ru
%F ZNSL_1977_67_a11
A. V. Tolstikov. Application of fields formed by the Gauss periods to the investigation of cyclic diophantine equations. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 201-222. http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a11/