Application of fields formed by the Gauss periods to the investigation of cyclic diophantine equations
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 201-222
Voir la notice de l'article provenant de la source Math-Net.Ru
The question of the nonsolvability of the equation
$$
Z^*_l(x_0,x_1,\dots,x_t)=\prod^{l-1}_{i=0}\sum^t_{j=0}x_j\zeta^{ij}=Dl^wx^l,\quad (D\varphi(D)z,l)=1
$$
in rational integers $x_0,x_1,\dots,x_t,z$ satisfying certain additional conditions is investigated. Two cases are considered: 1) $l$ is a regular prime number and $0$; 2) $l$ is an irregular prime number, $l=fe+1$ ($f$ is prime), $l>c_0(f,t)$ and $l$ does not divide the Bernoulli numbers $B_{fk+1}$ ($k=1,3,\dots,e-1$), $B_{2fk}$ ($k=1,2,\dots,\frac{e}{2}-1$).
@article{ZNSL_1977_67_a11,
author = {A. V. Tolstikov},
title = {Application of fields formed by the {Gauss} periods to the investigation of cyclic diophantine equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {201--222},
publisher = {mathdoc},
volume = {67},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a11/}
}
TY - JOUR AU - A. V. Tolstikov TI - Application of fields formed by the Gauss periods to the investigation of cyclic diophantine equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1977 SP - 201 EP - 222 VL - 67 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a11/ LA - ru ID - ZNSL_1977_67_a11 ER -
A. V. Tolstikov. Application of fields formed by the Gauss periods to the investigation of cyclic diophantine equations. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 4, Tome 67 (1977), pp. 201-222. http://geodesic.mathdoc.fr/item/ZNSL_1977_67_a11/