On connection between random curves, changes of time and regenerative times of random processes
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 3, Tome 55 (1976), pp. 128-164
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A product space $\Phi\times D$ is considered where $\Phi$ is a set of all continuous non-decreasing functions
$\varphi\colon[0,\infty)\to(0,\infty)$, $\varphi(0)=0$, $\varphi(t)\to+\infty$ ($t\to\infty$); $D$ is a set of all right-continuous functions $\xi\colon(0,\infty)\to X$, $X$ is some metric space. Two maps $\Phi\times D\to D$: are defined. The first is the projection $q(\varphi,\xi)=\xi$, and the second is change of time $u(\varphi,\xi)=\xi\circ\varphi$. The following equivalence relation in $D$ is defined:
$$
\zeta_1\sim\xi_2\Leftrightarrow\exists\varphi_1,\varphi_2\in\Phi:
\xi_1\circ\varphi_1=\xi_2\circ\varphi_2.
$$
Let $M$ is a set of all equivalence classes. Then $L$ is the map $D\to M$: $L\xi_1=L\xi_2\Leftrightarrow\xi_1\sim\xi_2$. $L\xi$ is called the curve corresponding to $\xi$. The following theorem is proved: two random processes with probability measures $P^1$ and $P^2$ on $D$ possess of identical random curves (i.e. $P^1\circ L^{-1}=P^2\circ L^{-1}$) if and only if two random changes of time exist (i.e. two probability measures $Q^1$ and $Q^2$ on $\Phi\times D$) for which $P^1=Q^1\circ q^{-1}$, $P^2=Q^2\circ
q^{-1}$) which transform these two processes in a process with a measure $\widetilde{P}$ (i.e. $Q^1\circ u^{-1}=Q^2\circ u^{-1}=\widetilde{P}$). If $(P_x^1)_{x\in X}$ and $(P_x^2)_{x\in X}$ are two families of probability measures for which $P_x^1\circ L^{-1}=P_x^2\circ L^{-1}$ $\forall x\in X$ then for each $x\in X$ corresponding measures $Q^1_x$ and $Q^2_x$ may be found as follows. The set of regenerative times of the family $(\widetilde{P}_x)_{x\in X}$ contains all stopping times which are simultaneously regenerative times of the families $(P^1_x)_{x\in X}$ and $(P^2_x)_{x\in X}$ and have a special first passage time property.
			
            
            
            
          
        
      @article{ZNSL_1976_55_a8,
     author = {B. P. Harlamov},
     title = {On connection between random curves, changes of time and regenerative times of random processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--164},
     publisher = {mathdoc},
     volume = {55},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a8/}
}
                      
                      
                    TY - JOUR AU - B. P. Harlamov TI - On connection between random curves, changes of time and regenerative times of random processes JO - Zapiski Nauchnykh Seminarov POMI PY - 1976 SP - 128 EP - 164 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a8/ LA - ru ID - ZNSL_1976_55_a8 ER -
B. P. Harlamov. On connection between random curves, changes of time and regenerative times of random processes. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 3, Tome 55 (1976), pp. 128-164. http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a8/
